Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
CSSR (1984). Crystal Structure Search and Retrieval Instruction Manual. SERC Daresbury Laboratory, Warrington, England.

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1992). C48, 366-368

2-(Chlorodimethylstannyl)-4-methylbenzenesulfonyl Pyrrolidide

By Hans Preut, Christian Wicenec and Wilhelm Paul Neumann
Fachbereich Chemie, Universität Dortmund, Postfach 500500 , D-4600 Dortmund 50, Germany

(Received 25 June 1991; accepted 19 August 1991)

Abstract. $\left[\mathrm{Sn}\left(\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClNO}_{2} \mathrm{~S}\right)\right], M_{r}=408.51$, orthorhombic, $P b c a, a=7.596$ (5),$b=18.654$ (13), $c=$ $23.447(19) \AA, \quad V=3322(4) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.633 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \quad \mu=$ $1.82 \mathrm{~mm}^{-1}, F(000)=1632, T=291(1) \mathrm{K}$, final $R=$ 0.047 for 1652 unique observed $[F \geq 4.0 \sigma(F)$] diffractometer data. This is the first case of complexation of a triorganotin halide by an SO_{2} group forming an intramolecular pentacoordination at the Sn atom. The five atoms bound to Sn form a distorted trigonal bipyramid with Cl and O in the apical positions $[\mathrm{Sn}-\mathrm{Cl} 2.438$ (3), $\mathrm{Sn}-\mathrm{O} 2.529$ (6) $\AA, \mathrm{Cl}-\mathrm{Sn}-\mathrm{O}$ $\left.171.4(2)^{\circ}\right]$ and the C atoms in the equatorial plane $[\mathrm{Sn}-\mathrm{C} 2.113(8), 2.13(1), 2.171(8) \AA, \mathrm{C}-\mathrm{Sn}-\mathrm{C}$ 107.4 (3), 124.1 (3), 122.2 (4) ${ }^{\circ}$]. The O-Sn-C and $\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}$ angles are in the range from 75.3 (2) (ring angle) to $99.1(3)^{\circ}$ and the bond angles at S are

Fig. 1. General view (SHELXTL-Plus graphic) of the asymmetric unit, showing the atom-numbering scheme. Anisotropic ellipsoids represent 50% probability boundaries.
in the range from 105.5 (4) to 118.5 (4) ${ }^{\circ}$. Short intermolecular contacts around the free O at S indicate weak hydrogen bonds.

Experimental. The crystals were obtained from hexane/dichloromethane, 3:1, m.p. 419 K . A well developed crystal platelet of size $\sim 0.06 \times 0.13 \times$ 0.35 mm was used. Its quality was checked with optical polarizing microscopy. The crystal was mounted on a glass fibre. D_{m} was not determined. Intensity data were collected with $\omega / 2 \theta$ scans, constant scan speed, scan width $0.8^{\circ}+$ dispersion $\left(0.02^{\circ}\right.$ steps, 1 s per step). A modified Hilger \& Watts diffractometer (Lange \& Burzlaff, 1991) with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation was used. The lattice parameters were determined from a least-squares fit of 20 reflections with $2 \theta_{\max }=17.7^{\circ}$. Three standard reflections ($200,060,0,0,10$) were recorded every 100 reflections and an intensity loss of up to 7% was detected during data collection; 13110

Fig. 2. Stereoscopic view (SHELXTL-Plus graphic) of the unit cell. H atoms are omitted for clarity.
© 1992 International Union of Crystallography

Table 1. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{4}\right)$

	$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }} / U$
$\mathrm{Sn}(1)$	-0.00826 (9)	0.18764 (3)	0.06606 (2)	455
$\mathrm{Cl}(1)$	-0.0311 (4)	0.3098 (1)	0.0298 (1)	759
S(1)	-0.1580 (3)	0.0521 (1)	0.15309 (9)	478
$\mathrm{O}(1)$	-0.0341 (7)	0.0623 (3)	0.1063 (2)	589
$\mathrm{O}(2)$	-0.0941 (9)	0.0224 (3)	0.2054 (3)	682
$\mathrm{N}(1)$	-0.310 (1)	-0.0010 (3)	0.1302 (3)	506
C(1)	-0.035 (1)	0.1326 (5)	-0.0122 (3)	634
C(2)	0.238 (1)	0.1961 (6)	0.1091 (4)	703
C(3)	-0.214 (1)	0.1951 (4)	0.1301 (3)	371
C(4)	-0.292 (1)	0.2603 (4)	0.1425 (4)	457
C(5)	-0.406 (1)	0.2693 (4)	0.1887 (4)	524
C(6)	-0.435 (1)	0.2107 (5)	0.2246 (4)	530
C(7)	-0.359 (1)	0.1454 (4)	0.2137 (3)	527
C(8)	-0.249 (1)	0.1380 (4)	0.1666 (3)	392
C(9)	-0.435 (1)	-0.0352 (5)	0.1697 (4)	724
C(10)	-0.612 (2)	-0.0183 (8)	0.1473 (6)	1237
C(11)	-0.592 (2)	-0.0035 (7)	0.0853 (6)	927
C(12)	-0.404 (1)	0.0200 (6)	0.0767 (4)	694
C(13)	-0.494 (2)	0.3403 (5)	0.2003 (4)	907

Table 2. Bond distances (\AA), bond angles $\left(^{\circ}\right.$), torsion angles $\left({ }^{\circ}\right)$, least-squares planes (\AA) and dihedral angles $\left({ }^{\circ}\right)$

$\mathrm{Sn}(1)-\mathrm{Cl}(1) \quad 2.4$	2.438 (3)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.38$ (1)	1.38 (1)
$\mathrm{Sn}(1)-\mathrm{O}(1) \quad 2.5$	2.529 (6)	$\mathrm{C}(3)-\mathrm{C}(8) \quad 1.39$ (1)	1.39 (1)
$\mathrm{Sn}(1)-\mathrm{C}(1) \quad 2.1$	2.113 (8)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.39$ (1)	1.39 (1)
$\mathrm{Sn}(1)-\mathrm{C}(2) \quad 2.1$	2.13 (1)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.40$ (1)	1.40 (1)
$\mathrm{Sn}(1)-\mathrm{C}(3) \quad 2.1$	2.171 (8)	$\mathrm{C}(5)-\mathrm{C}(13) \quad 1.51$ (1)	1.51 (1)
$\mathrm{S}(1)-\mathrm{O}(1) \quad 1.4$	1.459 (6)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.37$ (1)	1.37 (1)
$\mathrm{S}(1)-\mathrm{O}(2) \quad 1.4$	1.431 (6)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.39$ (1)	1.39 (1)
$\mathrm{S}(1)-\mathrm{N}(1) \quad 1.6$	1.614 (7)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.48$ (2)	1.48 (2)
$\mathrm{S}(1)-\mathrm{C}(8) \quad 1.7$	1.773 (8)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1.49$ (2)	1.49 (2)
$\mathrm{N}(1)-\mathrm{C}(9) \quad 1.4$	1.47 (1)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.51$ (2)	1.51 (2)
$\mathrm{N}(1)-\mathrm{C}(12) \quad 1.4$	1.49 (1)		
$\mathrm{C}(2)-\mathrm{Sn}(1)-\mathrm{C}(3)$	107.4 (3)	$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(9) \quad 121.3$	121.3 (6)
$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(3)$	124.1 (3)	$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(12) \quad 109.7$	109.7 (7)
$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(2)$	122.2 (4)	$\mathrm{Sn}(1)-\mathrm{C}(3)-\mathrm{C}(8) \quad 120.8$	120.8 (6)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(3)$	75.3 (2)	$\mathrm{Sn}(1)-\mathrm{C}(3)-\mathrm{C}(4) \quad 120.6$	120.6 (6)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(2)$	87.7 (3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8) \quad 117.5$	117.5 (7)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(1)$	82.4 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) \quad 122.3$	122.3 (7)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{C}(3)$	97.5 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13) \quad 121.4$	121.4 (8)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{C}(2)$	99.1 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) \quad 118.2$	118.2 (8)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{C}(1)$	98.3 (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13) \quad 120.4$	120.4 (8)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{O}(1)$	171.4 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7) \quad 120.9$	120.9 (8)
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(8)$	109.6 (4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8) \quad 119.3$	119.3 (8)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(8)$	109.2 (4)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7) \quad 121.7$	121.7 (7)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	106.9 (4)	$\mathrm{S}(1)-\mathrm{C}(8)-\mathrm{C}(7) \quad 117.7$	117.7 (6)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(8)$	105.5 (4)	$\mathrm{S}(1)-\mathrm{C}(8)-\mathrm{C}(3) \quad 120.6$	120.6 (6)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	107.0 (4)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10) \quad 105.7$	105.7 (9)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	118.5 (4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11) \quad 107$) 107 (1)
$\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{S}(1)$	116.8 (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12) \quad 106(1)$	2) 106 (1)
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(12)$	117.3 (6)	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(11) \quad 105.1$) 105.1 (8)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	(8) 8.6 (6)	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10) \quad-$	(10) - 14 (1)
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{S}(1)$	(1) -3.2 (4)	$\mathrm{Sn}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{S}(1)$ -	(1) $\quad-12.8$ (9)
$\mathrm{C}(8)-\mathrm{S}(1)-\mathrm{O}(1)-\mathrm{Sn}(1)$	(1) -1.3 (4)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	(11) 24 (1)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(8)-\mathrm{C}(3)$	3) $\quad 8.5$ (8)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12) \quad-$	C(12) -23(1)
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	C(11) 0 (1)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(1)$	$-\mathrm{N}(1) \quad 15$ (1)
No. Plane through	ugh atoms	Equation of the plane (x along a, y in the plane $a b, z$ along c^{*})	
$\mathrm{Sn}(1), \mathrm{O}(1), \mathrm{S}(1), \mathrm{C}(3), \mathrm{C}(8)$		a, y in the plane $a b, z$ along c^{*}) $-0.712 x-0.218 y-0.667 z=-1.751$	z $=-1.751 \quad 215.7$
$2 \mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6)$, C(6), C(7), C(8)	$-0.784 x-0.258 y-0.564 z=-1.39$	
$3 \mathrm{~N}(1), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}$), C(11), C(12)	$0.147 x-0.917 y-0.372 z=-1.45$	

Dihedral angles: 1,2 7.6 (2); 1,3 69.9 (3); 2,3 70.6 (4)
reflections with $4.5 \leq 2 \theta \leq 50.0^{\circ}, 0 \leq h \leq 10,-23 \leq$ $k \leq 23,-28 \leq l \leq 28$ were measured. The data were corrected for Lorentz-polarization and decay but not for absorption effects and averaged ($R_{\text {int }}=0.017$) to 2938 unique reflections, 1652 of which had $F \geq$ $4.0 \sigma(F)$. The systematic absences ($0 k l$) $k=2 n+1$, ($h 0 l$) $l=2 n+1$, (hk0) $h=2 n+1$ conform to space group Pbca. The structure was solved via direct methods and $\Delta \rho$ maps. It was refined (on F) using full-matrix least squares with anisotropic displacement parameters for all non- H atoms and a common isotropic displacement parameter for the H atoms, which were placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$). 173 parameters were refined. Weights $\left.w=1.0 /\left[\sigma^{2}(F)+0.000245 F^{2}\right)\right]$ led to a featureless analysis of variance in terms of $\sin \theta$ and F_{o}. The refinement converged to $S=1.32, R=0.047$, $w R=0.040,(\Delta / \sigma)_{\max }=0.006$ (no extinction correction). The correctness of the space-group choice was checked by using MISSYM (Le Page, 1987). The largest peaks in the final $\Delta \rho$ map were $\pm 0.8(2) \mathrm{e} \AA^{-3}$. Atomic scattering factors for neutral atoms and real and imaginary dispersion terms were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The programs used were PARST (Nardelli, 1983), SHELXTL-Plus (Sheldrick, 1987), PCK83 (Williams, 1984), PLATON (Spek, 1982), SADIAN (Baur \& Wenninger, 1969) and MISSYM (Le Page, 1987). The molecule and the numbering scheme are shown in Fig. 1 and a stereoscopic view of the unit-cell contents is in Fig. 2. Positional parameters and the equivalent values of the anisotropic displacement parameters for the non- H atoms are given in Table 1.* Bond lengths, bond angles, torsion angles, least-squares planes and dihedral angles are given in Table 2.

Related literature. The title compound was obtained from 3 -(trimethylstannyl)toluene and N-pyrrolidylsulfonyl chloride with AlCl_{3} as a catalyst at 263 K . The reaction mixture was hydrolyzed and the white precipitate washed with cold methanol. Instead of the normal reaction course a tin-methyl bond was split and no ipso substitution occurred, which can normally be observed (Al-Allaf, Kobs \& Neumann, 1989; Preut, Wicenec \& Neumann, 1991; Neumann \& Wicenec, 1991).

[^0]Baur, W. H. \& Wenninger, G. (1969). Sadian. Program for calculation of atomic distances and angles in crystal structures. Univ. of Illinois, Chicago, USA.
Lange, J. \& Burzlaff, H. (1991). J. Appl. Cryst. 24, 190-193.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
neumann, W. P. \& Wicenec, C. (1991). J. Organomet. Chem. In the press.
Preut, H., Wicenec, C. \& Neumann, W. P. (1991). Acta Cryst. C47, 2214-2216.

Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4. for Nicolet $R 3 \mathrm{~m} / V$ crystallographic systems. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre. Oxford: Clarendon Press.
Williams, D. E. (1984). PCK83. A Crystal and Molecular Packing Analysis Program. Univ. of Louisville; QCPE Program No. 481. Indiana Univ., USA.

Acta Cryst. (1992). C48, 368-369

Bis(4-methylbenzenecyanamidosulfonato)dipyridinecopper(II)

By J. Kožíšek
Department of Inorganic Chemistry, Faculty of Chemical Technology, Radlinského 9, Slovak Technical University, CS - 81237 Bratislava, Czechoslovakia
and H. Köhler \dagger and B. Freude
Chemistry Section, Martin Luther University, D-4010 Halle-Wittenberg, Germany

(Received 17 July 1991; accepted 2 August 1991)

Abstract

Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right], \quad M_{r}=612.2\), triclinic, $\quad P \overline{1}, \quad a=7.150(4), \quad b=9.314$ (5),$\quad c=$ 10.523 (7) $\AA, \quad \alpha=93.55$ (5),$\quad \beta=97.15$ (5),$\quad \gamma=$ 109.06 (4) ${ }^{\circ}, \quad V=653.3$ (7) $\AA^{3}, \quad Z=1, \quad D_{x}=$ $1.556 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \bar{\alpha}$ radiation, $\lambda=0.71069 \AA, \mu$ $=1.04 \mathrm{~mm}^{-1}, \quad F(000)=315, \quad T=293(2) \mathrm{K}, \quad R=$ 0.032 for 2307 observed reflections. The Cu atom lies on a centre of symmetry and is octahedrally coordinated by four N and two O atoms. The $\mathrm{Cu}-\mathrm{N} 1$, $\mathrm{Cu}-\mathrm{N} 2$ and $\mathrm{Cu}-\mathrm{O} 1$ distances are $2.010(2)$, 1.936 (2) and 2.616 (4) \AA, respectively. Twelvemembered rings are formed by pairs of bidentate cyanamidosulfonato groups which link adjacent Cu atoms through $\mathrm{Cu}-\mathrm{O}-\mathrm{S}(\mathrm{O})-\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{Cu}$ bridges into infinite chains running parallel to the $a c$ plane.

Experimental. The title compound was prepared from the reaction of an aqueous solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ containing pyridine with an aqueous solution of $\mathrm{Na}\left[4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NCN}\right]$ (Köhler \& Freude, 1991). Crystals were obtained immediately; m.p. 440 K . Well shaped blue crystal ($0.5 \times 0.3 \times 0.1 \mathrm{~mm}$) was mounted on a Syntex $P 2_{1}$ diffractometer using graphite-monochromated Mo $K \bar{\alpha} \quad$ radiation; $\theta-2 \theta$-scan technique. Cell parameters by least squares on 15 reflections ($8 \leq \theta \leq 21^{\circ}$). Empirical absorption correction based on reflection intensity measurements at different azimuthal angles, trans-
\dagger Deceased.
0108-2701/92/020368-02\$03.00
mission range $0.828-1.002$. Total 3271 reflections $\left(1.5 \leq \theta \leq 27.5^{\circ}\right)$ measured in the range $0 \leq h \leq 9$, $-12 \leq k \leq 11,-13 \leq l \leq 11$. No significant variation in the net intensities of two reference reflections ($2 \overline{1} \overline{1}, 11 \overline{3}$) measured every 98 reflections. 3020 unique reflections ($R_{\text {int }}=0.017$ for 336 reflections) and 2307 satisfied $F_{o} \geq 4 \sigma(F)$. Structure was solved by the Patterson method (Sheldrick, 1990), full-matrix leastsquares refinement of 227 parameters based on F (Sheldrick, 1976). Anisotropic thermal parameters for non- H atoms and isotropic for H atoms. At convergence $R=0.0324, \quad w R=0.0366, \quad w=0.32 /$ $\left[\sigma^{2}(F)+0.00060 F^{2}\right], \quad(\Delta / \sigma)_{\max } \leq 0.033, \quad(\Delta \rho)_{\max }=$ $0.29,(\Delta \rho)_{\min }=-0.25 \mathrm{e}^{\AA^{-3}}$; isotropic extinction correction $\quad F_{c}{ }^{*}=F_{c}\left[1-x F_{c}^{2} / \sin (\theta)\right], \quad x=2.26(1) \times$ 10^{-6}. Scattering factors for $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$ and S given in SHELX76 (Sheldrick, 1976) and those for neutral Cu corrected for f^{\prime} and $f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99, 149). All calculations on an EC-1045 computer system. Atomic parameters are given in Table $1, \ddagger$ selected interatomic parameters in Table 2 and

[^1]
[^0]: * Lists of structure factors, thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54508 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

 ## References

 Al-Allaf, A. K., Kobs, U. \& Neumann, W. P. (1989). J. Organomet. Chem. 373, 29-35.

[^1]: \ddagger Lists of structure factors, anisotropic thermal parameters, H -atom parameters, least-squares planes and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54522 (19 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: MU0282]
 (C) 1992 International Union of Crystallography

